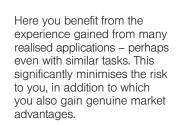


Precision Spray Nozzles for the Chemical Industry

MODERN NOZZLE TECHNOLOGY OPENS UP INTERESTING POSSIBILITIES FOR THE CHEMICAL INDUSTRY


Increasing quality demands and ever more sophisticated production processes make it necessary to exploit all

technical possibilities so that you can continue to be a successful force on the market. More and more, it is a matter of making even already automated process sequences more efficient (and thus more economical) by integrating new technologies. Nozzle and spraying technology can make positive contributions towards this in many cases.

In many applications, practical experience has shown that the best results are always achieved where nozzle technology has been optimally tailored to individual requirements. With a broad product range and reliable technical information and documentation, Lechler has created the perfect conditions for solving many tasks. Nevertheless, areas do of course still remain in which the combination of nozzle know-how and, in addition, special industry knowledge is necessary in order to achieve genuinely perfect results.

The Lechler consultant engineers know what matters in your area of work, and how to realise your ideas and goals from a technical point of view.

You will also find many ideas, comprehensive information and work tools on the Internet at www.lechler.com.

The chemistry's right with Lechler

In the many engineering processes in the chemical and petrochemical industry, atomization technology is one area in which precision and reproducibility play an important role.

Lechler has been a reliable partner in this area for over 130 years – not only with a wide and quickly available selection of standard nozzles, but also with the know-how and sophisticated measuring and production technology for products that are tailored exactly to your needs.

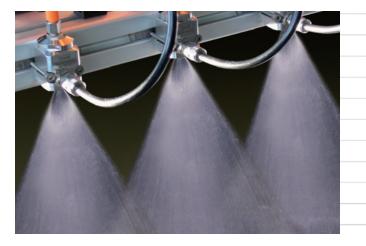
The standard

Even in the Lechler core catalogue "Precision Spray Nozzles and Accessories", you will find a wide selection of high-quality nozzles that are available quickly at a reasonable price and for the many different tasks that arise in chemical and physics technology.

Special solutions

Often however, standard products are not sufficient for the large-scale industrial framework conditions that exist in special industries. That's why in addition to our standard range, you will also find in this brochure other Lechler nozzles that we manufacture only to order, e.g. for the particular needs of the chemicals and petrochemical industry. If none of these meet your requirements, we would be happy to examine the possibilities open to us for developing optimum atomization nozzles that are tailor-made to meet your needs.

Compared with the in-stock products from our standard catalogue that are manufactured in large-series production, these nozzles are inevitably somewhat more expensive. And of course the production-related delivery times are longer. Please bear this in mind.


Our competence

Lechler is a world leader in the field of nozzle and spray technology. Many renowned companies, including in the chemical industry, have taken advantage of this fact. Our application engineers are familiar with practical use from many successful applications, and are therefore competent partners in the development and realisation of exemplary solutions.

This know-how and the excellent technical possibilities that Lechler can offer in research, design and production provide you with the security that is essential in process development today. Find out for yourself in a no-obligation information discussion with us.

CONTENT		Page
Applications		4-5
Nozzle selection crite	ria	6-7
Nozzle overview		8-9
Twin-fluid nozzles		10/23
Hollow cone nozzles	11-	12/22
Full cone nozzles	13-	19/22
Tank cleaning nozzles	20-	21/23
Flat fan nozzles		23
VarioSpray I		23

LECHLER NOZZLES ARE USED IN MANY FIELDS IN THE CHEMICAL INDUSTRY

Applications from A to Z

Absorption, Adsorption, Adiabatic Cooling

Belt Lubrication & Cooling,

Cryogenics, Coating, Cleaning in Place (CIP), Conveyor Lubrication, Condensation, Cooling, Centrifuge Cleaning

Decontamination, Disinfection, Dosing, Dedusting, Degassing, Denitrification, Drying, Droplet Separators

Emergency Showers, Evaporation

Flash Evaporation, Filter Cleaning, Fire Protection, Foam Suppression, Flue Gas Desulfurization, Fluidized Bed Technology

Gas Treatment, Granulation

High Pressure Cleaning, Humidification

Impregnation, Injection Cooling

Jet Cutting

Mixing Devices

NOx Removal

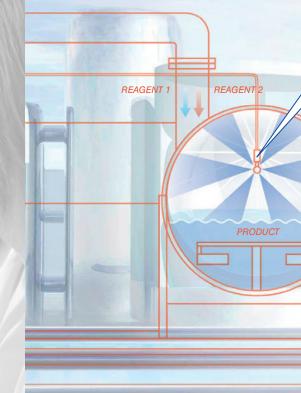
Oven Cooling, Oversaturation

Pelletizing

Quenching

Rain Curtains, Reactor Cleaning, Retrofitting of Air Cooling Banks

Spray Drying, Spraying filled and packed Columns, Scrubbers, Steam Quenching, Separating Agents Spray


Tank Cleaning, Temperature Control

Venturi Scrubbers,

Water Treatment, Waste Gas Treatment

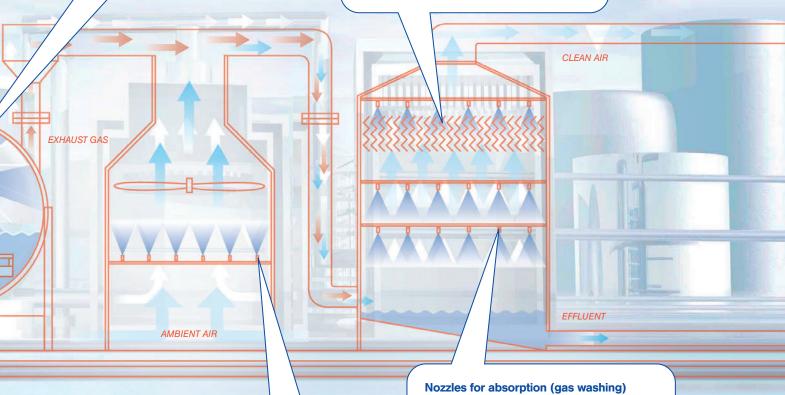
Zone Cleaning

Isn't your job in the list? Talk to us - we'd be happy to advise you!

Nozzles for container and tank cleaning

Lechler tank cleaning nozzles are used for cleaning or flushing containers and tanks,

.


and also for the adding and dosing of reactants. These can be permanently installed (CIP) or incorporated as required. Cleaning makes the subsequent processes more efficient. The product range covers a wide variety of rotation cleaners and stationary spray balls of different sizes, connection types and materials, as well as models with ATEX approval.

Droplet separators

Droplets can be carried along in the gas flow during the upstream absorption process. Lechler droplet separators remove these droplets from the gas flow in order to prevent, for example, downstream measuring devices from being affected.

Special full cone nozzles are available for cleaning droplet separators.

Nozzles for air cooling and humidification

The thermodynamic processes of evaporation are normally aimed for in air cooling and humidification. Fine to very fine droplets are injected into the air/gas flow at a pressure of 10-20 bar.

Producing the suitable droplet size and even distribution over the intake channel are particularly important here. Lechler hollow cone nozzles have been shown to be ideally suited

If the waste gas is to undergo absorbtion, Lechler full cone nozzles (for example) are used. It is of great importance here to obtain the longest possible droplet dwell time and to create a large specific reaction surface. Process effectiveness can be decisively boosted by making the right nozzle selection and having an optimum nozzle arrangement.

WHAT YOU SHOULD BEAR IN MIND WHEN PLANNING

Nozzle selection criteria:

- **1) Atomization methods**
- 2 Flow rate
- (3) Spray pattern
- 4 Spray angle
- **5** Viscosity
- **6 Narrowest cross section**
- 7 Droplet sizes
- **® Spray impact**
- Ambient conditions
- **10 Materials**
- (1) Connections

The most important criteria that must be taken into account when selecting nozzles are listed below.

1 Atomization methods

Single-fluid nozzles spray small to very large volumes of liquid solely via pressure. This makes them particularly suitable for spraying low-viscosity (e.g. water, alcohols) to slightly viscous (e.g. engine oil 0W30 at 27°C) liquids and, depending on the jet shape, pressure and flow rate, they produce fine to very coarse droplets. Since only one fluid flow must be handled, single-fluid nozzles are comparatively easy to install and use.

The typical pressures are between 0.5 and 30 bar.
With single-fluid nozzles, higher differential pressures than 30 bar are in most cases used only for atomizing viscous product, or in cleaning systems with special high-pressure flat fan and solid stream nozzles. Twin-fluid nozzles atomize the liquid with the aid of a compressible medium, in most cases compressed air or steam.

They work in the range of very small to medium flow rates and are preferred for particularly fine misting or the atomization of high-viscosity liquids and dispersions (e.g. glycerine at 20°C or mayonnaise). A distinction is made between twin-fluid nozzles with internal mixing and those with external mixing. The combining of two different fluid flows makes the installation and operating complexity greater than is the case with comparable singlefluid nozzles.

2 Flow rate

Unless otherwise stated, the flow rate information for our nozzles always refers to water. The conversion of differing liquid densities is explained in our standard catalogue.

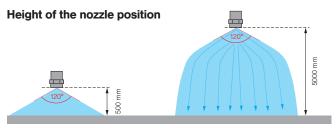
③ Spray pattern

Depending on the version, single-fluid nozzles can spray the liquid as a hollow cone, full cone or flat fan. The solid stream nozzle does not spray, but rather produces a closed spray that hits at a concentrated point. The spray only begins to break up after some distance.

Twin-fluid nozzles normally produce full cone or flat fan spray patterns, and some versions can change from one pattern to the other according to specific procedures for those models.

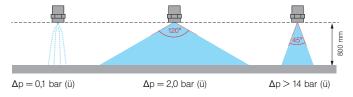
4 Spray angle

Twin-fluid nozzles have a narrow spray angle of approximately 20° due to the high speed at which the compressible medium exits. However, as the distance from the nozzle increases, the spray pattern becomes increasingly less sharply delimited.


Single-fluid nozzles are available with different spray angles depending on the version and job, e.g. solid stream nozzle 4 0° and tank cleaning nozzle 4 360°. The spray angles quoted by Lechler apply close to the nozzle and in a still atmosphere. Gravity and flow processes in the ambient atmosphere alter the spray pattern.

5 Viscosity

In the case of single-fluid, hollow cone and full cone nozzles in particular, increased viscosity of the liquid brings about a reduction in the flow rate, a change to the spray pattern (a sharper spray angle) and a coarser droplet spectrum.


Depending on the fluid properties, it is possible to counteract this to a certain extent by means of higher pressure. For very viscous substances, it is recommended to use twin-fluid nozzles in most cases. When taking into account the viscosity, it is also helpful to likewise consider the rheological flow characteristics.

The following parameters influence the spray pattern:

The diagram above illustrates how height influences the spray pattern.

Changing the nozzle pressure

Spraying upwards.

Spraying downwards.

- 48

6 Narrowest cross section

For orientation purposes with respect to the risk of blockage, we specify a narrowest cross section (ØE) for most of our nozzles. Experience has shown that the maximum particle size in a liquid should not exceed one-third of the narrowest cross section.

Single-fluid, hollow cone and full cone nozzles with axial flow have an internal swirler, whereas hollow cone and full cone nozzles with inflow at the side (tangential or eccentric design) do not need a swirler and are therefore much less prone to blockages. In the field of flat fan nozzles, our tongue-type nozzles represent a special design that is less susceptible to blockages.

7 Droplet sizes

Twin-fluid nozzles can produce very fine to extremely fine droplets, this being mainly dependent on the flow rate ratio of the compressible medium being used (m³/h) to the atomized liquid (l/min). The greater this ratio, the finer the atomization.

In the case of single-fluid nozzles, the droplet spectrum is determined primarily by the pressure, the nozzle design and the flow rate. Increasing pressure results in finer atomization, but mostly only up to a certain level. Provided that the pressure and flow rate are the same, hollow cone nozzles produce very fine to fine droplets, full cone nozzles produce somewhat coarser droplet spectrums and flat fan nozzles have the coarsest droplet spectrum.

If we compare nozzles of one series at a particular pressure, nozzles with a lower flow rate produce finer droplet spectrums than nozzles with a higher flow

8 Spray impact

The conversion of the total spray force onto the surface being sprayed is referred to as the spray pressure. Fine atomization, low pressure and/or flow rate, long spraying distance and a wide spray angle result in a low spray pressure. High spray pressures are primarily obtained by means of flat fan nozzles with narrow to medium spray angles (20°-60°). Solid stream nozzles and special high-pressure, flat fan and solid stream nozzles used for short spraying distances are particularly suitable for maximum spray pressures.

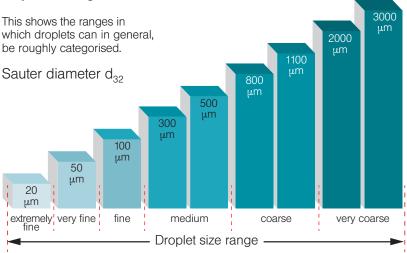
9 Ambient conditions

The environment being sprayed into is a decisive criterion for which spray angle, pressure, material or droplet size should be selected for the process. If the surrounding gas circulates around the nozzle, this can have a direct influence on the trajectory of the droplets and therefore on the process. Influencing factors in the environment include, for example, the ambient pressure and temperature, gas type (e.g. air or SO₂), dimensions (e.g. in the case of containers) or other parameters.

10 Materials

or PTFE.

Our standard materials for metallic nozzles are brass and the stainless steels 303 SS, 316 SS/316 L. Series-produced plastic nozzles are mostly made of PA, PVDF or POM. For special mechanical, thermal or chemical loads, we supply a wide variety of special materials, for example acid-resistant or heat-resistant stainless steels, special alloys like Alloy or Hastelloy, ceramic materials or plastics such as PP, PE1000


It is also necessary to select the optimum material for the seals. Viton, Teflon®, EPDM or EWP are used, depending on the job. However, sealing materials such as Inconel or Centellen are also used for special cases.

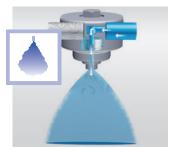
11 Connections

Nozzles are mainly constructed with the thread standards ISO 228, DIN 2999 (EN 10226-1) and NPT. At the same time, a distinction is made between sealing and non-sealing threads. In the case of non-sealing threads, Teflon® strip or a thread paste is used to provide the seal.

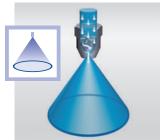
Not all nozzles can be connected with a thread. For these we supply flange solutions conforming to the standards DIN 2527, EN 1092-1 and ASME B 16.5. Aseptic clamp connections (Tri-Clamp connections) conforming to the standard DIN 11864-3 are also possible. Whether a connection other than the standard connection is feasible for a nozzle must be decided on an individual case basis.

Droplet size range

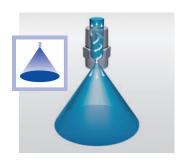
THE RIGHT NOZZLE FOR EVERY JOB - AN OVERVIEW OF THE MOST IMPORTANT SELECTION CRITERIA


The adjacent table gives you an overview of the most important criteria that are crucial to selecting the nozzles suitable for your particular application.

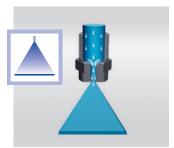
More detailed technical information and ordering instructions for the respective nozzle series can be found on the quoted pages in this brochure and/or in supplementary information documents on pages 22 and 23.


			Twin-fluid	d nozzles					
Optim	um nozz	zle				w hollow nozzles		centric holl cone nozzle	
selecti	on crite	ria		Û					
Series			150	76X X77	212	214 216 218	302	304 306 307	373
More deta	iled informa	ation on page	10	23	22	11	22	22	12
	very low	0 - 0.1 l/min		•	•				
	low	0.1 - 1.66 l/min	•	•	•	•	•		
Flow rate	medium	1.66 - 83.33 I/min	•	•		•	•	•	•
	high	83.33 - 1250 I/min							•
	very high	> 1250 I/min							
	extremely f	fine ≈ 20 μm	•	•					
	very fine	≈ 50 µm	•	•	•	•			
Droplet	fine	≈ 100 µm	•	•	•	•	•	•	
size	medium	≈ 300 - 500 µm	•			•	•	•	•
	coarse	≈ 800 - 1100 µm							•
	very coarse	e ≈ 2000 - 3000 μm							
	small	< 45°	•	•					
Spray	medium	45 - 80°			•	•	•		•
angle	large	80 - 120°				•	•	•	•
	very large	> 120°					•	•	
	low	0 - 11 bar(a)	•	•	•	•	•	•	•
Operating pressure	high	11 - 101 bar(a)			•	•	•	•	•
pressure	extremely h	nigh 101 - 2001 bar(a)							
	small	< 20 mPa·s	•	•	•	•	•	•	•
Viscosity	medium	80 - 500 mPa·s	•	•			•	•	•
	high	> 500 mPa⋅s		•					
Narrowest	small	< 2 mm	•	•	•	•	•		
cross	medium	2 - 8 mm	•	•		•	•	•	
section	large	> 8 mm					•	•	•

A wide range of nozzles with different jet shapes is available to you.


Twin-fluid nozzles

Hollow cone nozzles


Full cone nozzles

.

				Single-flu	id nozzles								
		full	Axial-flow cone nozz				Tangential-flow full cone nozzles	Fla	t fan nozz	les	Tank cle nozz		Vario Spray II
							472.336 30 CE			(C)	0		
460	490	403	405	421	502	524 525	422	686	632	616	577 579	599	634
22	13	15	22	16	18	19	23	23	23	23	20	21	23
													•
•	•				•		•	•	•				
•	•		•		•	•	•	•	•	•		•	
•		•	•	•	•	•	•	•	•	•	•	•	
		•		•							•		
													•
•	•				•								•
•	•		•		•		•	•	•	•			
•	•	•	•			•	•	•	•	•		•	
				•		•		•			•	•	
									•	•			
•	•	•	•	•	•		•		•	•			•
•	•	•	•	•			•	•	•	•			•
					•	•		•			•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•		•		•	•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•			•	•	•	•			
•	•				•			•	•	•			•
•	•		•		•	•	•			•	•	•	
		•	•	•		•	•				•		

Flat fan nozzles

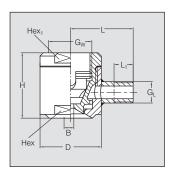
Tank cleaning nozzles

= optimum operating range

Series 150

Fine liquid atomization by means of air or vapour.

Chemical process engineering, cooling processes, atomizing viscous liquids. Liquid and air/vapour are added under pressure. The air pressure must always be above the liquid pressure.

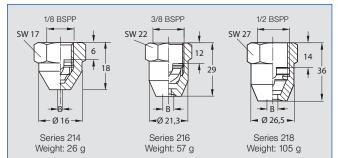

Higher air pressure and a greater volume of air result in finer atomization at lower liquid pressure.

\$	Ordering no.		B Ø	E Ø			V [I/	min]				V _n [r	n³/h] .ir	
	Type	Mat.	[mm]	[mm]								7	AII	
0		no.										Air nr	essure	
angle		17					[I	1				7 (II PI		
a							p [l	oarj				p [l	oarl	
aý.		SS								P 1	,			
Spray		316			0.3	0.5	0.7	1.0	1.0	2.0	3.0	4.0		
20-30°	150. 005	0	1.0	1.0	0.15	0.20	0.24	0.28	0.35	0.40	10	15	20	25
	150. 007	0	2.0	2.0	0.39	0.50	0.59	0.71	0.87	1.00	10	15	20	25
	150. 009	0	4.0	2.0	0.97	1.25	1.48	1.77	2.17	2.50	10	15	20	25
	150. 010	0	3.5	2.0	1.55	2.00	2.37	2.83	3.46	4.00	10	15	20	25
	150. 013	0	6.0	2.0	3.10	4.00	4.73	5.66	6.93	8.00	10	15	20	25
	150. 032	0	8.0	2.7	3.10	4.00	4.73	5.66	6.93	8.00	31	47	63	80
	150. 050	0	9.0	4.9	6.20	8.00	9.47	11.31	13.86	16.00	60	90	120	150
	150. 052	0	9.0	4.9	12.20	15.75	18.64	22.27	27.28	31.50	60	90	120	150
	150. 063	0	15.0	4.9	24.40	31.50	37.27	44.55	100	150	200	250		

 $\mathsf{B} = \mathsf{bore} \ \mathsf{diameter} \cdot \mathsf{E} = \mathsf{narrowest} \ \mathsf{free} \ \mathsf{cross} \ \mathsf{section}$

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	150. 005	+	17	=	150. 005. 17

Туре	G _w BSPP	G _L BSPP	H [mm]	D [mm]	L [mm]	L ₁ [mm]	Hex [mm]	Hex ₁ [mm]	Weight 316 SS
150. 005. 17 -150. 013. 17	3/8"	1/4"	38.0	28.0	32.5	10.0	24.0	24.0	140 g
150. 032. 17	1"	3/8"	52.0	480	49.0	15.0	41.0	41.0	500 g
150. 050. 17 -150. 063. 17	1 1/4"	1/2"	75.0	65.0	58.0	15.0	55.0	55.0	1350 g


Series 214 / 216 / 218

Fine, uniform hollow cone spray.

Applications: Cooling and cleaning of air and gas, dust control, spraying onto filters, spray drying, desuperheating.



∢	Ordering no.		G	В	E				V [l/min]				Spray diameter
	Туре	Mat.		Ø [mm]	Ø [mm]								D at p = 3bar
y angle		17							p [bar]				<u>H</u>
Spray		316 SS	BSPP			0.5	1.0	2.0	3.0	5.0	10.0	20.0	H = 250 mm
60°	214. 184	0	1/8"	0.50	0.50	-	-	0.08	0.10	0.3	0.18	0.25	200
80°	214. 245 214. 305	0	1/8" 1/8"	1.00 1.80	0.50 0.50	-	- 0.23	0.16 0.32	0.20 0.39	0.25 0.51	0.36 0.72	0.51 1.01	450 450
60°	216. 324 216. 364	0	3/8" 3/8"	1.00 1.40	1.00 1.40	-	0.28 0.45	0.40 0.63	0.49 0.77	0.63 1.00	0.89 1.41	1.26 1.99	200 200
	216. 404	0	3/8"	2.00	2.00	-	0.71	1.00	1.22	1.58	2.24	3.16	200
90°	216. 496 216. 566 216. 646	000	3/8" 3/8" 3/8"	3.00 4.00 3.50	2.00 2.00 2.00	- - 2.00	1.20 1.77 2.83	1.70 2.50 4.00	2.08 3.06 4.90	2.69 3.95 6.32	3.80 5.59 8.94	5.38 7.91 12.65	500 500 500
	216. 686 216. 726	0	3/8" 3/8"	4.00 5.00	2.00	2.50 3.15	3.54 4.45	5.00 6.30	6.12 7.72	7.91 9.96	11.18 14.09	15.81 19.92	500 500
	216. 776	0	3/8"	6.00	2.00	4.30	6.00	8.50	10.40	13.40	19.00	26.90	500
	218. 646 218. 706	0	1/2" 1/2"	5.00 6.50	2.00 2.00	2.00 2.80	2.83 3.96	4.00 5.60	4.90 6.86	6.32 8.85	8.94 12.52	12.65 17.71	500 500
	218. 766	0	1/2"	5.00	2.00	4.00	5.66	8.00	9.80	12.65	17.89	25.30	500
	218. 826	0	1/2"	6.50	2.00	5.60	7.92	11.20	13.72	17.71	25.04	35.42	500
	218. 846 218. 886	0	1/2" 1/2"	7.50 9.00	2.00 2.40	6.25 8.00	8.84 11.31	12.50 16.00	15.31 19.60	19.76 25.30	27.95 35.78	39.53 50.60	500 500

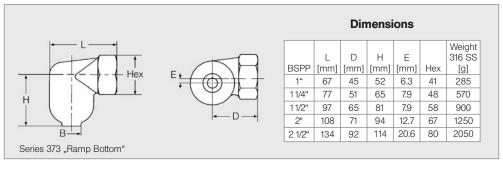
 $B = bore diameter \cdot E = narrowest free cross section$

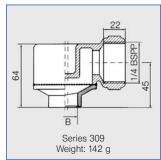
Example + Material no. = Ordering no. Type 214. 184 = 214. 184. 17 for ordering: + 17

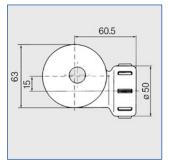
Eccentric hollow cone nozzles

Series 373 "Ramp Bottom"

Fine, uniform hollow cone spray, also at low pressures. Applications:


cooling and cleaning of gas, water re-cooling, dust control, chemical process engineering.


Sectional view of a series 373 »Ramp Bottom« nozzle


»Ramp Bottom« design offering a longer service life, due to the patented »sloping« bottom of mixing chamber.

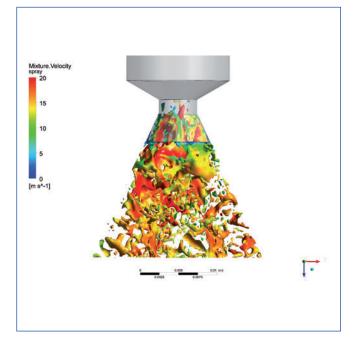
Less expensive plastic version, with low requirements on temperature and scuff resistance.

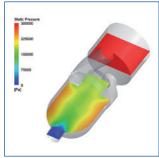
4	Or	dering	no.					В			V [I/	min]			Spray d	diameter			
	Type	Mat. no.			Code			Ø [mm]							at p =	= 2bar			
<u>0</u>		17													<u> </u>	 			
ay angle		SS	BSPP	BSPP	BSPP,	BSPP	BSPP				p [l	oar]			D-	<u> </u>			
Spray		316 S	1" BS	1 1/4"	1 1/2"	2" BS	2 1/2"		0.3										
70°	373. 115	0	AN	-	-	-	-	11.40	24.40										
80°	373. 175	0	AN	-	-	-	-	12.90	31.00										
	373. 235	0	-	AQ	-	-	-	16.20	45.70	59.00	83.40	118.00	187.00	264.00	700	1350			
	373. 285	0	-	AQ	-	-	-	20.50	62.00	80.00	113.00	160.00	253.00	358.00	800	1550			
	373. 325	0	-	-	AS	-	-	22.20	77.50	100.00	141.00	200.00	316.00	447.00	800	1550			
	373. 365	0	-	-	AS	-	-	23.60	67.90	114.00	161.00	227.00	359.00	508.00	700	1400			
	373. 415	0	-	-	-	AW	-	25.60	131.00	169.00	238.00	337.00	533.00	754.00	700	1400			
	373. 465	0	-	-	-	AW	-	30.70	182.00	182.00 235.00 332.00 469.00 742.00 1049.00									
	373. 505	0	-	-	-	-	AZ	32.50	209.00	800	1500								
	373. 515	0	-	-	-	-	AZ	34.80	233.00	301.00	1344.00	900	1700						
	373. 555	0	-	-	-	-	AZ	41.10	290.00	375.00	530.00	750.00	1186.00	1677.00	900	1700			

Plastic version:

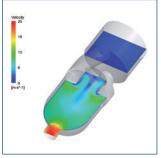
90°	309. 236. 5E	(Material PVDF)	20.00	45.70	59.00	83.40	118.00	187.00	264.00	850	1500
	309. 286. 5E	(Material PVDF)	24.00	62.00	80.00	113.00	160.00	253.00	358.00	750	1400

B = bore diameter


Series 490


Series 490 represents a new generation within the axial-flow full cone nozzles product group. These nozzles were developed using state-of-the-art design and simulation methods (CFD) and in practical operation they impress with the following advantages:

- A new internal design with approximately 30-40 % larger free cross sections compared to standard axialflow full cone nozzles. Greater operational reliability by minimising susceptibility to blockage.
- Even greater process reliability thanks to a stable spray angle across the entire pressure range.
- The extraordinarily even liquid distribution guarantees homogeneous wetting of the product being sprayed.



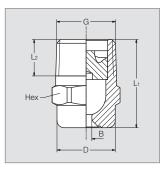
Simulation of the spray jet with CFD (computational fluid dynamics)

Simulation of the static pressure in the vortex chamber with CFD

Simulation of the velocity curve in the vortex chamber with CFD

Detailed technical information and order data for Series 490 can be found on the next page.

Series 490



Non-clogging nozzle design, stable spray angle and particularly even liquid distribution.

Applications:

Cleaning and washing processes, cooling of gaseous and solid materials, surface irrigation, mat spraying in air washers, improving chemical reactions.

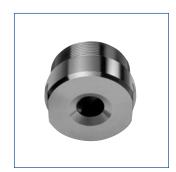
Code	G	Dimens	ions [mm]	ı D	Hex	Weight 316 L
		1	2			
CA	1/8" BSPT	18.0	6.5	10.0	11	13 g
CC	1/4" BSPT	22.0	10.0	13.0	14	16 g
CE	3/8" BSPT	24.5	10.0	16.0	17	28 g

Example	Туре	+	Material no.	+ Code	=	Ordering no.
for ordering:	490. 566	+	1Y	+ CA	=	490. 566. 1Y. CA

∢	Ore	dering	no.			B Ø	E Ø			Ý	[l/mir	1]			' '	diameter
'	Туре	Mat.		Code		اط [mm]	[mm]									=2bar
		no.														
Spray angle		1Y			_						p [bar]]				7‡
%			BSPT	BSPT	BSPT										H=	→ H=
ora) L	3" B	- E											200	500
S		316	1/8"	1/4"	3/8"			0.5	1.0	2.0	3.0	5.0	7.0	10.0	mm	mm
60°	490. 524	0	CA	-	-	1.60	1.60	1.15	1.52	2.00	2.35	2.89	3.30	3.81	220	560
	490. 564	0	CA	-	-	1.80	1.80	1.44	1.89	2.50	2.94	3.61	4.13	4.76	220	560
	490. 604	0	CA	CC	CE	2.10	2.10	1.81	2.39	3.15	3.70	4.54	5.20	6.00	220	560
	490. 644	0	-	CC	CE	2.30	2.30	2.30	3.03	4.00	4.70	5.77	6.60	7.61	220	560
	490. 684	0	-	CC	CE	2.60	2.60	2.87	3.79	5.00	5.88	7.21	8.25	9.52	220	560
	490. 724	0	-	CC	CE	3.00	2.80	3.62	4.77	6.30	7.41	9.09	10.40	11.99	220	560
	490. 764	0	-	-	CE	3.30	3.30	4.59	6.06	8.00	9.41	11.54	13.20	15.22	220	560
	490. 804	0	-	-	CE	3.70	3.70	5.74	7.58	10.00	11.76	14.43	16.51	19.04	220	560
90°	490. 566	0	CA	-	-	1.90	1.90	1.44	1.89	2.50	2.94	3.61	4.13	4.76	380	860
	490. 606	0	CA	-	CE	2.10	2.10	1.81	2.39	3.15	3.70	4.54	5.20	6.00	380	860
	490. 646	0	-	CC	CE	2.40	2.40	2.30	3.03	4.00	4.70	5.77	6.60	7.61	390	960
	490. 686	0	-	CC	CE	2.70	2.70	2.87	3.79	5.00	5.88	7.21	8.25	9.52	390	960
	490. 726	0	-	CC	CE	3.20	2.80	3.62	4.77	6.30	7.41	9.09	10.40	11.99	390	960
	490. 746	0	-	-	CE	3.20	3.20	4.08	5.38	7.10	8.35	10.24	11.72	13.52	390	960
	490. 766	0	-	-	CE	3.40	3.40	4.59	6.06	8.00	9.41	11.54	13.20	15.22	390	960
	490. 806	0	-	-	CE	3.90	3.90	5.74	7.58	10.00	11.76	14.43	16.51	19.04	390	960
	490. 846	0	-	-	CE	4.70	4.00	7.18	9.47	12.50	14.70	18.03	20.63	23.80	390	960
120°	490. 568	0	CA	-	-	1.90	1.90	1.44	1.89	2.50	2.94	3.61	4.13	4.76	680	1220
	490. 608	0	CA	-	-	2.10	2.10	1.81	2.39	3.15	3.70	4.54	5.20	6.00	680	1220
	490. 648	0	-	CC	CE	2.40	2.40	2.30	3.03	4.00	4.70	5.77	6.60	7.61	680	1330
	490. 688	0	-	CC	CE	2.80	2.80	2.87	3.79	5.00	5.88	7.21	8.25	9.52	680	1330
	490. 728	0	-	CC	CE	3.20	2.80	3.62	4.77	6.30	7.41	9.09	10.40	11.99	680	1330
	490. 748	0	-	-	CE	3.20	3.20	4.08	5.38	7.10	8.35	10.24	11.72	13.52	680	1330
	490. 768	0	-	-	CE	3.50	3.50	4.59	6.44	8.00	9.41	11.54	13.20	15.22	680	1330
	490. 808	0	-	-	CE	3.90	3.90	5.74	7.58	10.00	11.76	14.43	16.51	19.04	680	1330
	490. 848	0	-	-	CE	4.70	4.00	7.18	9.47	12.50	14.70	18.03	20.63	23.80	680	1330

 $\mathsf{B} = \mathsf{bore} \ \mathsf{diameter} \cdot \mathsf{E} = \mathsf{narrowest} \ \mathsf{free} \ \mathsf{cross} \ \mathsf{section}$

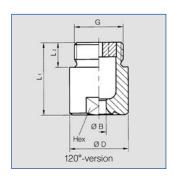
Other nozzle sizes and materials are available on request.



Series 403

Very uniform spray pattern.

Applications:
Surface spraying, spraying over packings, chemical process engineering, cooling of gaseous fluids and solids.


Plastic versions on request.

G G B B

60°/90°-version

90°-version

Dimensions [mm]												
Туре	BSPP	L ₁	L ₂	D	Hex							
403. 444/403. 446/ 403. 484/403. 486	2 1/2"	52	27	83	75							
403. 524/403. 526	3"	60	30	98	85							
403. 564/403. 604/ 403. 606	3 1/2"	70	32	118	105							
403. 624	4"	90	36	128	110							

120°-version

120°-version													
Dimensions [mm]													
Type	BSPP	L ₁	L ₂	D	Hex								
403. 448/403. 488	2 1/2"	124	27	83	75								
403. 528	3"	153	30	98	85								
403.608	3 1/2"	156	32	118	105								
403. 628	4"	165	36	128	110								

\$	Ordering no.		B Ø	E Ø				V [l/min]					liameter
,	Туре	Mat. no.	[mm]	[mm]								at p = 2 bar	
ıy angle		1Y						p [bar]					+
Spray		316 L			0.3	0.5	H = 0.5 m	H = 1 m					
60°	403. 444	0	25.00	6.00	187	230	303	400	470	577	660	580	1100
	403. 484	0	29.50	9.00	234	297	379	500	588	721	825	620	1150
	403. 524	0	32.00	8.00	295	362	477	630	741	909	1040	620	1150
	403. 564	0	38.00	14.00	375	459	606	800	941	1154	1320	620	1150
	403. 604	0	41.50	10.00	468	574	758	1000	1176	1443	1651	630	1200
	403. 624	0	48.50	15.00	484	625	887	1250	1531	1977	2339	770	1400
90°	403. 446	0	25.00	12.00	187	230	303	400	470	577	660	900	1700
	403. 486		29.50	12.00	234	287	379	500	588	721	825	900	1700
	403. 526	0	32.00	13.80	295	362	477	630	741	909	1040	900	1700
	403. 606	0	40.00	15.00	468	574	758	1000	1176	1443	1651	980	1750
120°	403. 448	0	25.50	10.00	187	230	303	400	470	577	660	1500	2850
	403. 488	0	29.50	11.00	234	287	379	500	588	721	825	1500	2850
	403. 528	0	32.00	15.00	295	362	477	630	741	909	1040	1500	2850
	403. 608	0	42.00	12.00	469	574	759	1000	1176	1443	1651	1550	2850
	403. 628	0	45.00	15.00	585	718	947	1250	1470	1903	2063	1600	2900

 $B = bore diameter \cdot E = narrowest free cross section$

Example Type + Material no. = Ordering no. for ordering: 403. 444 + 1Y = 403. 444. 1Y

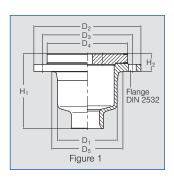
Series 421

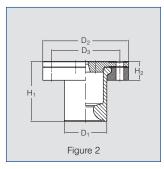
Even full cone distribution,

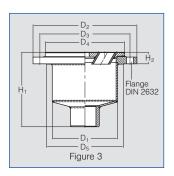
high flow rates.
Applications: For even surface irrigation, cooling and cleaning of gases, water recooling, column irrigation and for improving chemical reactions via surface enlargement.

\$	Ordering	g no.			B Ø	E				V [I/	min]		
	Туре	٨	∕lat. no).	[mm]	[m							
Spray angle		05	17	53		Mate	erial			p [t	oar]		
Spray		Cast iron	316 SS	ЬР		17	05 53	0.3	0.5	1.0	2.0	5.0	10.0
60°	421. 564	0	0	0	27	-	12	375	459	606	800	1154	1523
	421. 604	0	0	0	39	-	14	468	574	758	1000	1443	1904
	421. 624	0	0	0	41	-	13	585	718	947	1250	1803	2380
	421. 644	0	0	0	49	-	16	749	919	1213	1600	2308	3046
	421. 664	0	0	0	56	-	16	936	1149	1516	2000	2885	3807
	421. 684	0	0	0	58	21	21	1171	1436	1895	2500	3607	4759
	421. 704 421. 724	0	0	0	65 72	24 28	24 28	1475 1873	1809 2297	2387 3031	3150 4000	4545 5771	5997 7615
	421. 724 421. 744		0	0	72 81	32	32	2341	2872	3789	5000	7214	9518
	421. 764	-	0	0	88	38	39	2950	3618	4775	6300	9089	11993
	421. 784	_	0	0	99	43	37	3746	4595	6063	8000	11542	15229
	421. 804	_	0	-	112	46	42	4682	5743	7579	10000	14427	19037
	421. 824	-	0	-	125	52	47	5853	7179	9473	12500	18034	23796
90°	421. 566	0	0	0	37	-	15	375	459	606	800	1154	1523
90	421. 606	0	0	0	39	_	14	468	574	758	1000	1443	1904
	421, 626	0	0	O	43	-	18	585	718	947	1250	1803	2380
	421. 646	0	0	0	53	-	22	749	919	1213	1600	2308	3046
	421. 666	0	0	0	56	-	24	936	1149	1516	2000	2885	3807
	421. 686	0	0	0	59	28	28	1171	1436	1895	2500	3607	4759
	421. 706	0	0	0	66	32	32	1475	1809	2387	3150	4545	5997
	421. 726	0	0	0	72	36	33	1873	2297	3031	4000	5771	7615
	421. 746	0	0	0	81	40	38	2341	2872	3789	5000	7214	9518
	421. 766	-	0	0	88	42	37	2950	3618	4775	6300	9089	11993
	421. 786	-	0	0	99	47	42	3746	4595	6063	8000	11542	15229
	421. 806 421. 826	-	0	-	112 125	53 59	48 54	4682 5853	5743 7179	7579 9473	10000 12500	14427 18034	19037 23796
1000			_										
120°	421. 568 421. 608	0	0	0	36 40	-	15 14	375 468	459 574	606 758	800 1000	1154 1443	1523 1904
	421. 628	0	0	0	43	-	18	585	718	947	1250	1803	2380
	421. 648	0	0	0	53	-	22	749	919	1213	1600	2308	3046
	421. 668		0	0	55	_	24	936	1149	1516	2000	2885	3807
	421, 688	0	0	0	59	28	28	1171	1436	1895	2500	3607	4759
	421. 708	0	0	0	66	32	32	1475	1809	2387	3150	4545	5997
	421. 728	0	0	0	75	36	35	1873	2297	3031	4000	5771	7615
	421. 748	0	0	0	81	40	40	2341	2872	3789	5000	7214	9518
	421. 768	-	0	0	86	42	37	2950	3618	4775	6300	9089	11993
	421. 788	-	0	0	96	47	42	3746	4595	6063	8000	11542	15229
	421. 808	-	0	-	108	53	48	4682	5743	7579	10000	14427	19037
	421. 828	-	0	-	121	59	54	5853	7179	9473	12500	18034	23796

 $B = bore diameter \cdot E = narrowest free cross section$



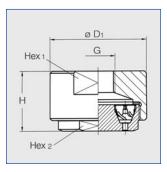

A


Axial-flow full cone nozzles

Series 421

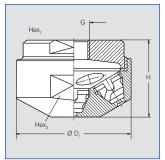
	~	Mat.	Fig.			[Dimensio	ons [mm	1]			Flange	e hole
Туре	4	no.	rig.	D ₁	D ₂	D ₃	D ₄	D ₅	H ₁	H ₂	D _N	Num- ber	Ø mm
421.56x/	60°-120°	05/17	1	96	200	160	122	121	140	39	80	8	18
421.60x	60-120	53	2	99	200	160	-	-	131	44	80	8	18
421.62x	60°-120°	05/17	1	113	220	180	158	141	156	28	100	8	18
421.02X	00 - 120	53	2	117	220	180	-	-	157	53	100	8	18
421.64x/	60°-90°	05/17	1	140	250	210	188	166	177	41,5	125	8	18
421.64x/ 421.66x	120°	05/17	1	140	250	210	188	166	177	29	125	8	18
421.00X	60°-120°	53	2	141	250	210	-	-	174	57	125	8	18
421.68x/	60°-120°	05/17	1	170	285	240	207	195	188	38	150	8	23
421.70x	60°-120°	53	2	171	285	240	-	-	188	51	150	8	23
	60°-120°	05	1	220	340	295	260	252	250	46	200	8	23
421.72x/	60°	17	3	214	340	295	260	252	243	35	200	8	23
421.74x	90°-120°	17	3	214	340	295	260	252	246	38	200	8	23
	60°-120°	53	2	225	340	295	-	-	252	50	200	8	23
421.76x/	60°	17	3	264	395	350	320	309	290	39	250	12	23
	90°-120°	17	3	264	395	350	320	309	291	40	250	12	23
421.78x	60°-120°	53	2	280	395	350	-	293	300	53	250	12	23
421.80x/	60°	17	3	315	445	400	348	359	355	39	300	12	23
	90°-120°	17	3	315	445	400	348	359	356	40	300	12	23
421.82x	60°-120°	53	2	328	445	400	-	360	369	57	300	12	23

Series 502 / 503



Fine full cone atomization with the aid of several hollow cones spraying into one another.

Applications:

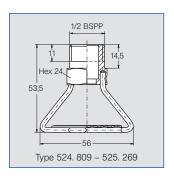

Cooling of gaseous and solid material, desuperheating, chlorine precipitation, absorption as well as for improvement of chemical reaction by enlarging the contact area.

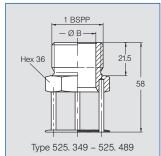
Dimensions											
	1/2"	3/4"									
Hex ₁	46	65									
Hex ₂	38	55									
Н	25	46									
D ₁	50	75									
Weight	250 g	870 g									
(Brass)	250 g	0/0 9									

С	Dimensions											
	1/2"	3/4"										
Hex ₁	27	50										
Hex ₂	36	55										
Н	28	53										
D ₁	40	60										
Weight	150 g	410 g										
(Brass)	150 g	410 9										

\$	Ordering no	Э.		G	B Ø	E Ø			V [l/	min]				ameter D : 2 bar
'	Туре	Mat.	. no.		[mm]	[mm]							at p =	- 2 Dai
Spray angle		17 ¹⁾	30		[]	[]			p [l	oar]			H	
ray		SS	SS	٥						H =	H=			
Sp		316	Brass	BSPP			0.5	1.0	2.0	3.0	5.0	10.0	1000 mm	2000 mm
70°	502. 445	0	0	1/2"	1.00	0.50	-	-	1.25	1.53	1.98	2.80	400	400
	502. 545	0	0	1/2"	1.80	0.50	-	1.58	2.24	2.74	3.54	5.01	400	400
	502. 585	0	0	3/4"	1.00	1.00	1.40	1.98	2.80	3.43	4.43	6.30	600	700
	502. 665	0	0	3/4"	1.40	1.40	2.20	3.18	4.50	5.51	7.11	10.10	800	900
	502. 745	0	0	3/4"	2.00	2.00	3.50	5.00	7.10	8.70	11.20	15.90	800	900
	502. 795	0	0	3/4"	2.50	2.00	4.60	6.70	9.50	11.60	15.00	21.20	900	1100
	502. 835	0	0	3/4"	3.00	2.00	6.00	8.30	11.80	14.50	18.70	26.40	1000	1200
	502. 875	0	0	3/4"	3.50	2.00	7.20	10.60	15.00	18.40	23.70	33.50	1100	1300
	502. 905	0	0	3/4"	4.00	2.00	8.80	12.70	18.00 28.00	22.05 34.29	28.40 44.30	40.20	1200	1500 1500
	502. 985 502. 025	0	0	3/4"	3.50 4.00	2.00 2.00	14.00 17.70	19.80 25.10	35.50	43.48	56.10	62.60 79.40	1200 1200	1600
	502. 025 502. 065	0	0	3/4"	5.00	2.00	22.10	31.80	45.00	55.11	71.10	100.60	1200	1800
	502. 115	0	0	3/4"	6.00	2.00	30.00	42.00	60.00	72.80	95.00	134.00	1300	2000
1000			_											
130°	502. 448 502. 548	0	0	1/2" 1/2"	1.00 1.80	0.50 0.50	-	- 1.58	1.25 2.24	1.53 2.74	1.98 3.54	2.80 5.01	500 700	500 700
	502. 588	0	0	3/4"	1.00	1.00	1.40	1.98	2.80	3.43	4.43	6.30	800	900
	502. 668	0	0	3/4"	1.50	1.50	2.20	3.18	4.50	5.51	7.11	10.10	1000	1100
	502, 748	0	0	3/4"	2.00	2.00	3.50	5.00	7.10	8.70	11.20	15.90	1100	1200
	502, 798	0	0	3/4"	2.50	2.00	4.60	6.70	9.50	11.60	15.00	21.20	1200	1300
	502. 838	0	0	3/4"	3.00	2.00	6.00	8.30	11.80	14.50	18.70	26.40	1400	1600
	502. 878	0	0	3/4"	3.50	2.00	7.20	10.60	15.00	18.40	23.70	33.50	1500	1700
	502. 908	0	0	3/4"	4.00	2.00	8.80	12.70	18.00	22.05	28.40	40.20	1500	1800
	502. 988	0	0	3/4"	3.50	2.00	14.00	19.80	28.00	34.29	44.30	62.60	1500	1800
	503. 028	0	0	3/4"	4.00	2.00	17.70	25.10	35.50	43.48	56.10	79.40	1600	1800
	502. 068	0	0	3/4"	5.00	2.00	22.10	31.80	45.00	55.11	71.10	100.60	2000	2500
	503. 118	0	0	3/4"	6.00	2.00	30.00	42.00	60.00	72.80	95.00	134.00	2000	3000

1) We reserve the right to deliver 316 SS or 316 L under the material no. 17. $B = bore diameter \cdot E = narrowest free cross section$


Series 524 / 525



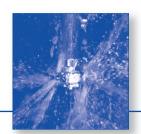
Full cone spray. Non clogging nozzle without swirl insert.

Applications: Fire fighting and broadcast spraying, wide area spray.

4	Ordering no	0.		B Ø			V [I/	min]			Spray d	liameter	
'	Туре	Mat	t no.	mm							at $p = 3$ bar approx.		
a		30	17 ¹⁾					*					
ıy angle		Brass/1.4310	SS/316 L				p [l	oar]			D		
Spray		Brass	316 S		0.5	H = 1 m	H = 3 m						
180°	524. 809	0	0	4.00	5.00	7.10	10.00	12.20	15.80	22.40	5.60 m	6.40 m	
100	524. 939	0	0	5.90	10.60	15.00	21.20	25.90	33.50	47.40	6.00 m	7.00 m	
	524. 969	0	0	6.20	12.50	17.70	25.00	30.60	39.50	55.90	8.00 m	9.00 m	
	525. 049	0	0	8.00	20.00	28.30	40.00	49.00	63.20	89.40	10.00 m	13.20 m	
	525. 109	0	-	9.30	28.00	40.00	56.00	69.00	89.00	125.00	10.20 m	13.40 m	
	525. 169	0	-	10.90	40.00	57.00	80.00	98.00	126.00	179.00	10.60 m	13.60 m	
	525. 229	0	-	12.20	56.00	79.00	112.00	137.00	177.00	250.00	6.80 m	10.40 m	
	525. 269	0	0	12.30	70.00	99.00	140.00	171.00	221.00	313.00	5.20 m	10.20 m	
	525. 349	0	0	16.20	112.00	158.40	224.00	274.30	354.20	500.80	4.80 m	9.70 m	
	525. 469	0	0	23.80	222.70	315.00	445.50	545.60	704.40	996.20	4.50 m	9.50 m	
	525. 489	0	0	25.30	250.00	353.60	500.00	612.40	790.60	1118.00	4.00 m	9.00 m	

¹⁾ We reserve the right to deliver 316 SS or 316 L under the material no. 17.

Туре + Material no. Ordering no. 525.809 525. 809. 30 for ordering:


Version with dust protection cap on request.

Series 577/579

- Self-spinning stainless steel tank cleaning head
- Powered and lubricated by the cleaning fluid
- Flat fan nozzle holes for particularly powerful all-round cleaning
- Large free cross sections, less prone to clogging

Applications:

For cleaning medium-sized to large containers, e.g. in the chemical industry and also in the paper and food industry.

Recommended operating pressure:

1-3.5 bar, max. 5 bar

Max. temperature:

90°C

Weight:

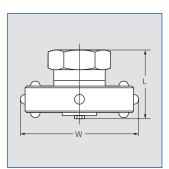
NPT 1" 750g NPT 2" 1800g NPT 3" 3600g

Material:

Housing: 316 SS

Bearing: Teflon® (PTFE) sliding

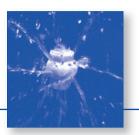
bearing


Accessories:

Spare parts set consisting of:

- Top seal
- Bottom seal
- Bolt
- Nut
- Sleeve
- Instructions for use

Size	Ordering no.
NPT 1"	057. 701. 55
NPT 2"	057. 702.55
NPT 3"	057. 703. 55


	Orc	dering	no.			Ý	i [l/min	1]				Effective
	Туре	Co	onnecti	on						Dimer	nsions	spray diameter
ngle							p [bar]					
Spray angle		NPT 1"	NPT 2"	NPT 3"	1	2	3	5	40 psi [US gal./ min]	Length [mm]	Width [mm]	Ø [m]
180°	577. 283. 17	BN	-	-	115	163	200	258	50	68,4	118	4
	577. 363. 17	BN	-	-	182	258	316	408	80	68,4	118	4
	577. 404. 17	-	BW	-	228	322	394	509	100	103	151	5
	577. 434. 17	-	BW	-	273 452	386 639	473 783	610 1010	120 170	103 103	151 151	5 5
	577. 524. 17 577. 564. 17	-	BW -	- MB	452 564	798	783 977	1262	250	116	188	6
	577. 594. 17			MB	677	958	1173	1515	300	116	188	6
	577. 614. 17	-	-	MB	791	1118	1369	1768	350	116	188	6
180°	579. 284. 17	BN	-	-	115	163	200	258	50	68,4	118	4
	579. 364. 17	BN	-	-	182	258	316	408	80	68,4	118	4
	579. 404. 17	-	BW	-	228	322	394	509	100	103	151	5
7711	579. 434. 17	-	BW	-	273	386	473	610	120	103	151	5
	579. 494. 17	-	BW	-	380	538	659	851	170	103	151	5
	579. 564. 17	-	-	MB	564	798	977	1262	250	116	188	6
	579. 594. 17	-	-	MB MB	677 791	958 1118	1173 1369	1515 1768	300 350	116 116	188 188	6
	579. 614. 17		-	IVID								
270°	577. 285. 17	BN	-	-	115	163	200	258	50	68,4	118	4
	577. 365. 17 577. 405. 17	BN	- BW	-	182 228	258 322	316 394	408 509	80 100	68,4 103	118 151	4 5
	577. 405. 17 577. 435. 17		BW	-	273	386	473	610	120	103	151	5
	577. 495. 17		BW		380	538	659	851	170	103	151	5
	577. 566. 17	-	-	MB	564	798	977	1262	250	116	188	6
	577. 596. 17	-	-	MB	677	958	1173	1515	300	116	188	6
	577. 616. 17	-	-	МВ	791	1118	1369	1768	350	116	188	6
360°	577. 289. 17	BN	-	-	115	163	200	258	50	68,4	118	4
	577. 369. 17	BN	-	-	182	258	316	408	80	68,4	118	4
	577. 409. 17	-	BW	-	228	322	394	509	100	103	151	5
	577. 439. 17	-	BW	-	273 380	386 538	473 659	610 851	120 170	103 103	151 151	5 5
	577. 499. 17 577. 569. 17	-	BW -	- MB	380 570	806	987	1274	250	116	188	6
	577. 509. 17 577. 599. 17			MB	685	969	1187	1532	300	116	188	6
	577. 619. 17	_	_	MB	798	1128	1382	1784	350	116	188	6
	J. 1. 010. 17				, 00	1125	1002	1701		110		

Please note: Higher pressure generally means higher wear and smaller droplets. This might have adverse effects on the cleaning result. We do not recommend the operation with compressed air.

Example Type + Connection = Ordering no. for ordering: 577. 404. 17. HW = 577. 404. 17. BW

PTFE Whirling Nozzle – for high temperature applications Series 599

- PTFE whirling nozzle for high temperature applications
- Balanced rotating action
- Gap-free all-around cleaning
- Free spinning, self-lubricating and self-flushing
- All used materials are FDAconform

Applications:

For rinsing of small and medium-sized vessels and reactors in higher temperature processing environments.

Max. tank diameter:

Rinsing: 5 m Cleaning: 3 m

Recommended operating pressure:

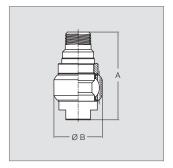
1-2 bar, max. 6 bar

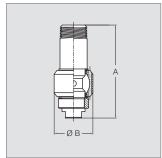
Installation:

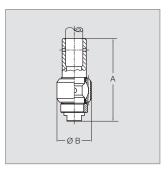
Operation in every direction is possible

Max. temperature:

130°C


Materials:


- PTFE
- Rings: Hastelloy®



\$	Ordering Type		ection		V [I/	min]	A Length [mm]	B Ø [mm]	Weight [g]	
Spray angle		3/4" male NPT	3/4" female tube	1	p [l	oar]				
360°	599. 133. 55	BK	-	71	100	122	31	89	51	160
	599. 170. 55	BK	-	61	84	103	26	91	38	115
	599. 174. J7	-	TF07	61	84	103	26	91	38	115

Please note: Higher pressure generally means higher wear and smaller droplets. This might have adverse effects on the cleaning result. We do not recommend the operation with compressed air.

Example	Туре	+ C	onnection	=	Ordering no.
for ordering:	599. 170. 55.	+ B	K	=	599. 170. 55. BK

YOU WILL FIND OTHER NOZZLES FOR USE IN THE CHEMICAL INDUSTRY IN OUR INDUSTRY CATALOGUE ...

Precision Spray Nozzles and Accessories uses and Accessories used and Ac

Over the years, our catalogue for precision nozzles and accessories has become an in-demand nozzle technology handbook. It contains valuable tools and comprehensive technical information on Lechler products.

Many of them have for a long time also been used in the chemical industry to solve a very wide range of tasks.

Axial-flow hollow cone nozzles	Series	∢	Ѷ [l/min] at p = 2 bar	Connection	Application/ Design	Catalogue page
	212	60° 80°	0.015 - 0.46 (at p = 7 bar)	1/4 BSPT 1/4 BSPP	Disinfection, humidification of air, spraying over germinating boxes, product dampening, humidification of textiles, oil spraying, absorption. Extremely fine, fog-like hollow cone spray.	2.5
Eccentric hollow cone nozzles	Series	\$	Ѷ [l/min] at p = 2 bar	Connection	Application/ Design	Catalogue page
	302	60° 80° 90° 130°	0.40 – 25.00	3/8 BSPP	Humidification of air in air washers, dust control, spraying onto filters, foam control, cooling. Non-clogging nozzle design, without swirl insert.	2.8 2.9
	304 306 307	90° 130°	5.60 – 33.50	1/2 BSPP 3/4 BSPP	Fire fighting, protection of storage tanks, foam control. Non-clogging nozzle design, without swirl insert.	2.12
Full cone nozzles	Series	\$	V [l/min] at p = 2 bar	Connection	Application/ Design	Catalogue page
	460 461	45° 60° 90° 120°	0.40 – 71.00	1/8 BSPT 1/4 BSPT 3/8 BSPT 1/2 BSPT 3/4 BSPP 1 BSPP	Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving on chemical reactions. Large free cross-sections, due to optimized x-style swirl insert.	3.5
	405	60° 90° 120°	100.00 – 315.00	1 1/4 BSPP 1 1/2 BSPP 2 BSPP	Surface spraying, spraying over packings, cleaning and washing process, chemical process engineering, cooling of gaseous fluids and solids, water treatment. Uniform full cone spray.	3.7

Full cone nozzles	Series	≮	V [l/min] at p = 2 bar	Connection	Application/ Design	Catalogue page
LECHLER	422 423	60° 90° 120°	1.00 – 100.00	1/4 BSPT 3/8 BSPT 1/2 BSPT 3/4 BSPT 1 BSPT	Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving on chemical reactions, continuous casting. Without swirl inserts, nonclogging.	3.10 3.11
Flat fan nozzles	Series	\$	V [l/min] at p = 2 bar	Connection	Application/ Design	Catalogue page
	632 633	20° 30° 45° 60° 75° 90° 120°	0.05 – 49.96	1/8 BSPP 1/4 BSPP 3/8 BSPP 1/2 BSPP	Spray cleaning, surface treatment, filter cleaning, belt cleaning, lubricating, coating. Standard design with conical, self sealing thread.	4.8
GE LECOLER	616 617	20° 30° 45° 60° 90° 120°	6.30 – 63.00	3/4 BSPP	Cleaning installations, rain curtains, gravel washing, spray pipes, foam spraying, roll cooling, cooling of rolled stock. Non-clogging nozzle design.	4.15
	686	90° 140°	0.50 – 28.00	1/8" BSPT 1/4" BSPT 3/8" BSPT 1/2" BSPT	Foam control in storage tanks and sewage treatment plants, for cleaning and washing process. Particularly clog proof.	4.31

... AND IN DIFFERENT SPECIAL BROCHURES

We have collated information about special nozzles in their own brochures covering various subject areas that are also of particular interest to the chemical industry.

All documents can be downloaded from our website at **www.lechler.com**.
We would also be happy to

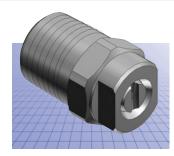
send you the brochures.

VarioSpray II - Nozzle valve system for the variable atomization of very small liquid volumes

Lechler GmbH Precision Nozzles · Nozzle Systems P.O. Box 13 23 72544 Metzingen / Germany Phone +49 (0) 71 23 - 962 - 0 Fax +49 (0) 71 23 - 962 - 444

E-Mail: info@lechler.de Internet: www.lechler.com

ON THE INTERNET, YOU CAN FIND EVEN MORE INFORMATION AND SUPPORT FOR YOUR WORK AT: www.lechler.com


You can also find on the Internet additional information about our entire range of services, work aids, our global presence and much more besides - we look forward to your visit.

AND AT http://lechler.partcommunity.com THERE'S 3D DESIGN DATA

3D data on Lechler nozzles and accessories is available to you free of charge for your development and design work. Profit from these advantages:

- Time-saving, direct download of design drawings and technical data.
- Simple product selection similar to the Lechler printed catalogue.
- Preview function with product photo and 3D graphic.
- Available in all common 3D file formats.
- Free use after once-only registration.

With this service, Lechler once again proves its competence and its high standards as a technology leader.

Take advantage of this offer to simplify your work. We would be happy to support you.

Lechler world-wide

